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Characterization of severe matrix distortions
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Severe matrix deformation has been examined at an early stage of age-hardening in

a polycrystalline Brush 25 alloy containing Cu—11.50 at % Be—0.23 at % Co aged at 200 °C.

Simplified anisotropic elastic models for the atomic displacement field about coherent

disc-shaped precipitates provide quantitative estimates of the atomic displacement field in

the surrounding matrix. This requires a separation of diffracted intensity into Bragg peaks,

static diffuse scattering, and quasilines. The latter originates from the severely distorted

zone about the precipitates. Elastic models include single discs, and [1 0 1] stair-step pairs.

Ageing at 200 °C introduces larger changes in the diffraction profiles than at 315 °C. This is

observed mainly as large variations in quasiline intensities, as well as in their relative peak

positions. Comparisons are made at about one-half the maximum hardness. These

variations result from the response of the coherent anisotropic copper matrix to large

tetragonal Bain strains in disc-shaped precipitates, and a strong preference for the largest

deformations to be perpendicular to the free surface. Quasiline shifts are used along with

Végard’s Law to extend the metastable Guinier—Preston (GP)-zone boundary to 200 °C. This

boundary extension is smooth and continuous with published data, and thereby relates the

metastable GP boundary to a highly distorted matrix about disc-shaped precipitates. Disc

diameters range from 4.8—6.4 nm with a thickness of 0.29 nm after 16—64 h at 200 °C. The

[1 0 1] stair-step pair model best fits the experimental results.
1. Introduction
Certain age-hardenable alloy systems can produce
zones of large matrix deformations about precipitates
having a size misfit with the surrounding matrix.
These zones grow with ageing and give special diffrac-
tion effects. This includes a partitioning of the sharp
Bragg peaks into somewhat broader static diffuse
scattering, and quasilines [1]. Our theoretical and
experimental efforts have been directed towards
a quantitative investigation of this behaviour in
a polycrystalline Cu—Be—Co alloy. Ageing at low tem-
peratures, for times shorter than a time giving max-
imum hardness, gives this interesting mix of three
types of scattering that all become quasilines before
maximum hardness is attained.

A detailed model describing this phenomenon re-
quires time-consuming calculations that have been
carried out only at selected ageing times [2]. These
are capable of fitting X-ray diffraction (XRD) profile
shapes resulting from structural changes taking place
in the matrix and the precipitate of aged alloys. In this
paper, a simplified procedure is described in terms

of a precipitate model that gives agreement with the
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XRD integrated intensities as well as other general
trends in the scattering.

Theory has been developed [1] which is based upon
concepts originally proposed by Krivoglaz [3]. How-
ever, the interplay with quantitative XRD data pro-
vides new insights and plays an important role in the
overall analysis and the interpretation of the data.
This has required the development of models for the
displacement field from precipitates which includes an
anisotropic displacement field from combinations of
disc-shaped precipitates [4]. These displacement fields
serve as input for the calculation of the exponential
attenuation factor, 2M, which determines the par-
titioning of matrix scattering into its three parts. An
experimental approach is described for determining
2M by unscrambling the data for matrix scattering
into its three components [1]. The relative integrated
intensities for each matrix peak, having a range of
widths, is given by

Bragg (B) e~2M (1)

Static diffuse (SD) 2Me~2M (2)
Quasiline (Q) 1!e~2M!2Me~2M (3)
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Figure 1 (2 0 0) powder diffraction peak resulting from a !20%
strain acting perpendicular to a thin ellipsoid zone in a copper
matrix with semi-axis a"b"3.5 and c"0.7 nm. CrKa1

radiation
was used to calculate the 2h scale. For these conditions, 2M"2.4.

The second and third components represent diffuse
scattering that has sharpened into Bragg-like peaks.
For coherent precipitation, the Bragg peaks normally
remain unshifted at the 2h position found in the as-
quenched solid solution. The SD peaks are very close
to or at the Bragg peak as mainly Huang diffuse
scattering; however, a tail portion may extend some
distance from the Bragg peaks. Quasilines can display
the largest shift from the Bragg positions by varying
amounts, but this typically is not large. Our present
experience with a Cu—Be—Co alloy indicates that the
shift requires an elastic displacement field that is an-
isotropic, making it noticeably dependent upon the
permutation of the indices of the diffracting planes.
Quasilines are broader by a factor of two to three than
the SD component, with the SD having an interme-
diate apparent width when compared with the sharp
Bragg peak. This may be seen in Fig. 1 showing pow-
der diffraction simulations of a possible (2 0 0) peak for
a Cu—Be alloy. The quasiline, static diffuse, and Bragg
scattering are illustrated separately and as combined
total scattering for 2M"2.4.

Fig. 2 illustrates partitioning of the three compo-
nents with increasing 2M, which increases with the
severity of the displacement field and with peaks
located at larger distances in reciprocal space. At
small 2M, which is found for as-quenched systems,
only Bragg and a very broad SD are important. For
2M&1, all three are equally important, while for
2M'5, the Bragg peak is seen to vanish. Our proced-
ure examines samples within the range 0.5(2M(5.
Although the Bragg peak contributes only &5% of
the intensity, its sharpness allows it to be barely per-
ceptible at 2M&5.

This behaviour can be understood qualitatively
from Fig. 3a. Consider a crystal having N

3
cells along

columns oriented perpendicular to the diffracting
planes (h k l ). The sources of lattice distortion originate
at precipitates depicted by heavy dots. The dimension
of the zone of severe distortion is given by n

Q
, while

the limit of weak elastic coupling is given by n
B

for
pairs of cells within a column oriented perpendicular
to planes with indices (h k l). Beyond the distance, n ,
B
pairs of cells are no longer coupled, because the dis-
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Figure 2 Partitioning of integrated intensites versus 2M into (——)
Bragg, (— — —) static diffuse (SD), and (—·—) quasiline (Q).

Figure 3 (a) Schematic representation of crystal, illustrating severe-
ly distorted zones with displacement centres acting on a column. n

Q
and n

B
provide approximate dimensions of the severely distorted

zones and range of coupling for pairs of cells within a column.
(b) Schematic representation of Fourier coefficients showing ap-
proximate cutoff points, n

Q
and n

B
, which influence the sharpness of

Fourier series describing quasilines and static diffuse.

placement field at large distances decreases inversely
as the square of the distance. Instead, the displacement
of pairs of cells beyond n

B
become independent and

are determined by precipitates located in the proxim-
ity of each cell in the pair. The detailed shape of the
intensity diffracted from such a column is represen-
table by a Fourier series containing coefficients with
projected column displacements perpendicular to the

(h k l) planes. This can be conveniently separated into



three parts. The Fourier series describing the quasiline
contains Fourier coefficients whose number is deter-
mined by an upper limit, n

Q
, which may be estimated

from the diameter of the precipitate over the 2M range
under consideration. The dimensioning of the Fourier
series describing the SD is determined by the limit, n

B
.

With increasing size of a coherent precipitate and
a decreasing density, the size of the severely distorted
zone, n

Q
, increases. Consequently, the quasiline sharp-

ens because its Fourier series representation contains
Fourier coefficients that converge more slowly to
a larger limiting value of n

Q
(see Fig. 3b). This further

increases the fractional contribution of quasiline, be-
cause 2M must increase with the strength of the field.
An increasing precipitate size and strength increases
n
B
. A similar argument applies to the convergence and

dimensioning of the Fourier series describing the SD,
with an associated sharpening and a fractional contri-
bution that at first increases and then decreases. The
latter occurs when the overall matrix becomes domin-
ated by the severely distorted zone. Also, as the lattice
distortion becomes more severe, a smaller fraction of
cells along columns remain uncoupled. This reduced
volume fraction of uncoupled cells results in an overall
attenuation of the sharp Bragg peak. However, if N

3
is

large, there are a sufficient number of terms in the
Fourier representation of the Bragg peak to maintain
its sharpness. Clearly a full integration over all three
components gives the classical integrated intensity
expression [1]. The preceding discussion should be
limited to approximately 2M(5. With an even more
severe matrix fields and larger severely distorted zones
that impinge upon each other, the quasilines could
begin to broaden.

2. Calculation of 2M
2.1. Point source
For precipitation problems, 2M may be calculated as
a sum over column displacements Z

m3t
d
0

[1, 3]

M"X
#

+
t

[1!cos(2pl
0
Z

m3t
)] (4a)

where m
3

is the column location or and an equivalent
volume integral with

M"

X
#

»
!
P

=

Vc

M1!cos [k
0

Z
m3

d
0
]N d» (4b)

where »
!

is the atomic volume, X
#

represents the
fraction of sites occupied by the centre of a precipitate,
and k

0
"2p l

0
/d

0
"4p sin h/k. The order integers l

0
and d

0
are obtained from the interplanar spacing

d"
a

(h2#k2#l2)1@2
"

d
0

l
0

with l
0
"1, 2,2 (5)

for a cubic matrix. Here the lowest order d-spacing
(l
0
"1) gives d

0
in terms of the lattice parameter, a, of

the cubic cell and cubic Miller indices. The direction
of d

0
lies along columns perpendicular to the (h k l)

planes. If an inverse-square dependence is assumed

and the strength term, A(/, a) is anisotropic, the pro-
jected displacement is

Z
m3

d
0
"

A(/, a)

r2
cos v (6)

where r is the radial distance in reciprocal space, v is
the projection angle, and / and a are angles which
enter into its calculation. Because the scattered inten-
sity is localized near each (h k l) point in reciprocal
space, the displacements entering the intensity expres-
sion may be taken as projected parallel to the diffrac-
tion vector, H

hk l
. This allows attention to be focused

on displacements along columns arranged perpen-
dicular to the reflecting planes of the matrix. There-
fore, Z

m3
d
0
, might be considered as one of many pro-

jections onto H
hkl

for a cell located in column m
1
, m

2
at a column location m

3
. This is located by the vector

r with an origin at the centre of a precipitate. Fig. 4a
and b illustrate and define the angles entering into the
calculation of the projection angle, v, as well as those
entering into the calculation of the displacement field,
i.e. / and a.

Equation 4a was developed assuming that precipi-
tates are randomly positioned on one habit plane.
Additional crystallographically equivalent orienta-
tions of ellipsoidal or disc-shaped precipitates may be
required to maintain the required crystal symmetry.

Equation 4b is readily integrated, with d»"

!r2 dx da dr and x"cos /, changing variables for
the radial integration

y"
[k

0
A(/, a)x]1@2

r
(7)

and combining terms provides

M"

X
#

»
!
P

2p

0
P

1

~1
P

y#

0

][k
0
A (/, a)x]3@2

1!cos y2

y4
dy dx da (8a)

with

y
#
"

[k
0
A(/, a)x]1@2

r
#
(/, a)

(8b)

In this case, we define

r
,
"[k

0
A (/, a)x]1@2 (8c)

which is anisotropic and contains a projection term, x.
The location of the precipitate—matrix interface is
given by r

#
(/, a). Consider only the integral over

radial distance which can be carried out with a two-
step integration by parts

P
y#

0

(1!cos y2)

y4
dy"

4

3 P
y#

0

cos y2 dy

!

2

33
y#
Ay2# sin y2

#
#sin2

y2
#
2 B (9)

in the limit of y
#
"r

,
/r

#
PR, the zone of severe distor-

tion becomes much larger than the precipitate for all
directions and Equation 8a simplifies to

M(h k l)"
X

#
»
!

(2p)1@2

3 P
2p

0
P

1

~1
][k
0
A(/, a)x]3@2 dxda (10)
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Figure 4 (a) The various angles as a spherical triangle entering into
the projection with v being the angle between the radial displace-
ment along r and a column direction H

hk l
, S

j
the angle between the

symmetry axis of a defect [h@k@l@N and H
hkl

, and / the angle between
[h@k@l@ ] and the radial direction r. (b) The angles /, a entering into
the displacement field with r originating from the centre of the
defect. r

#
locates the precipitate surface.

M is determined by averaging over projected displace-
ments originating from all orientations of r

S[k
0
A (/, a)x]3@2T"

:2p

0
:1
~1

[k
0
A(/, a)x]3@2 dx da

:2p

0
:1
~1

dx da

(11)

or

M (h k l )"
4p(2p)1@2

3

X
#

»
!

S[k
0
A(/, a)x]3@2T (12)

This gives a (sin h/k)3@2 dependence of 2M.
Weak fields correspond to the other extreme or

small y . In other words, the radius r becomes much

# ,

smaller than the precipitate r
#

for all directions, and
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Figure 5 Dependence of exponential term, n, and coefficient e with
y
#
. (]) Numerical fitting, (—) analytical equation.

one obtains

M(h k l)"
X

#
»
!

1

2 P
2p

0
P

1

~1

[k
0
A(/, a)x]2

r
#
(/, a)

dxda (13)

or, in terms of an average radial term taken over all
angles / and a

M(h k l)"
2pX

#
»
!

[k
0
A(/, a)x]2

r
#
(/, a)

(14)

The following form summarizes these limits giving
extremes in n and the power of k

0

M(h k l)"4p
X

#
»
!

e T
[A(/, a)x]n

r2n~3
#

(/, a)U kn
0

(15a)

n"G
2, y

#
P0 weak distortion

3
2
, y

#
PR severe distortionH (15b)

e"G
1
2
, y

#
P0 weak distortion

2
3
(p
2
)1@2+0.84, y

#
PR severe distortionH

(15c)

The transitions for n and e are illustrated in Fig. 5
which was obtained by expansion about a central
point of the data set (k

00
). It is found that n and e can

be taken as 2 and 1/2 for 0)y
#
)1. This requires that

the radius of the severely distorted zone be smaller
than the dimensions of the precipitate in each direc-
tion /, a. Over this range in y

#
, one finds that M varies

as the square of the radial distance in reciprocal space.
The square dependence is also found for the thermal
attenuation factor M

T
. If y

#
*5 the size of the severely

distorted zone dominates n+3/2 and e+0.8. Our
present interest is confined to the transition range
1)y

#
)3 in which the severely distorted zone grows

beyond the precipitate dimension but does not extend
over all of the matrix. Although both n and e are weak
functions of y

#
, they are included in Equation 15 and

show the greatest variation in the more complicated
transition region (1)y

#
)3).

If the strength term A(/, a) and r (/, a) are iso-

#

tropic, the average indicated in Equation 15a can be



carried out explicitly giving

M(h k l)"4pe@
X

#
»
!

[k
0
A]n

r2n~3
#

(16a)

At two extreme cases

e@"G
1
6
, y

#
P0

4
15

(p
2
)1@2 y

#
PR

(16b)

and

e"e@(n#1)

with n behaving as in Equation 15b. Again, Fig. 5
illustrates the overall dependence on y

#
. Equation 15a

provides a simple result giving the dependence of
specimen parameters such as the concentration of
precipitates, X

#
/»

!
, the strength of the lattice distur-

bance due to individual precipitates, A, and precipi-
tate radius, r

#
. The same arguments relating y

#
to

n and e@ (or e) hold if

y
#
"

(k
0
A)1@2

r
#

with the Krivoglaz radius,

r
,
"(k

0
A)1@2 (17)

Equations 15a and 16a represent simplified forms
not yet appearing in the literature that describe the
more interesting transition with 1)y

#
)3. The ex-

treme limiting cases for an isotropic field have been
reported by Krivoglaz [3] and are in complete agree-
ment with these results.

In order to calculate M(h k l), a model is required
for the elastic displacements. In the early stage of
precipitation, we consider thin discs subjected to an
apparent tetragonal transformation strain. A simple
displacement field is already available for a precipitate
in the form of a disc within an anisotropic matrix of
copper [4]. It is based upon a tetragonal strain with-
out moment and represents an asymptotic solution of
the form

l (r, /, C
4$
, C

%
)"

A(/, C
4$
, C

e
)

r2
, (18a)

with a vector strength given by

A(/, C
4$
, C

%
)"

*»

4pc G
i
3
2

(C
4$
E

1
[3(1!f (C

%
) cos2/

!8.08 f (C
%
) cos 4/ cos2 /!1]#2)

!i/ 3C
4$

sin/ cos/H (18b)

The various quantities are defined as follows

E
1
"

5l#3k

l
, (19a)

C
%
"1!

C
11
!C

12
2C

44

, (19b)

c"3
k#2l
3k#2l

(19c)
f (C
%
)"0.15 erf C

%
(19d)
with Lame elastic constants

k"
1
5

(C
11
#4C

12
!2C

44
) (20a)

l"
1
5

(C
11
!C

12
#3C

44
) (20b)

written in terms of the elastic constants. i
3
and i/ are

unit vectors along the radial and tangential directions.
The volume change for each disc-shaped precipitate is

*»"pX
$
»
SF

Sr3
0

(21a)

S"
h

r
0

(21b)

where, X
$

is the fraction of undersized or oversized
atoms in the precipitate, »

SF
is the volume size factor

or the fractional change in atomic volume with respect
to the atomic fraction of B, x

B
(see King [5]). r

0
and h are the radius and height of the disc, E

1
is an

elastic constant defined in terms of Lame’s constants.
C

4
and C

$
are the separate strengths of the spherical

and doublet components of the displacement fields
which may be expressed in terms of a single parameter
C

4$
[4], i.e.

C
4
"(1!C

4$
)
»
SF
»
!

4pc
(22a)

C
$
"3C

4$

»
SF
»
!

4pc
(22b)

with

C
4$
"

C
$

3C
4
#C

$

"

P
33
!P

11
2P

11
#P

33

(23a)

with P
33

and P
11

representing the components of the
dipole tensor that are associated with a tetragonal
field. Integrating Equation 18a over a spherical sur-
face surrounding the point defect, gives a volume
change »

SF
»
!
/c per defect in an infinite medium. »

!
has been tabulated by King [5]. Anisotropy has been
introduced empirically through f (C

%
) and an anistropy

factor defined by C
%

with single-crystal elastic con-
stants C

11
, C

44
, and C

12
.

Equation 18a can be reduced to the Keating—
Goland (K—G) expression for a loop [6] in an iso-
tropic medium by setting C

%
"0, x

$
»
SF

Sr3
0
"br2

0
, and

C
4$
"(1!2m)/(1#m) where m is Poisson’s ratio. C

4$
appears as a fixed parameter because of the rigid
boundary condition imposed parallel to the disc in the
K—G loop calculation. For the present application,
C

4$
, is adjustable, according to Equation 23a, in order

to allow for various transformation strains that might
occur during precipitation. Writing this in terms of
transformation strains [2] e

33
, e

11
"e

22
gives

C
4$
"

(e
33

!e
11

)

(e
33
#2e

11
)

(C
11
!C

12
)

(C
11
#2C

12
)

(23b)

If the volume change appearing in the strength term
in Equation 18b is set equal to that for one undersized
or oversized atom, i.e.
*»"pX
$
»
SF

Sr3
0
"»

SF
»
!

(24a)
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one obtains the contribution from one point source
within the disc. This term is directly related to the
displacement of a surface about the defect, i.e.

*»="P
p

0

l
3
(/, r)2pr2 sin/ d/"

*»

c
(24b)

with the previously defined Eshelby factor, c, appear-
ing as a correction between the volume change for an
infinite medium, *»=, and one that is finite, *».

Displacements must be projected along specified
column directions and superimposed in calculating
2M. Because the symmetry axis for the field does not
normally coincide with the column direction, addi-
tional terms are required for the projected field. The
various angles in stereographic projection are shown
in Fig. 4a. To project the radial component of the field,
one multiplies by

P
3
"cosx

3

"cos s cos /#sin s sin/ cos a (25a)

while for the projection of the tangential components,
/ differs by p/2 and one multiplies by

P
5
"cosx

5
"cos s cos A/#

p

2B#sin s sinA/#

p

2B cosa

"!cos s sin /#sin s cos/ cosa (25b)

The normal to the disc is along the z-axis, and C is
a vector along the column direction which is confined
to the xz plane. r is a vector extending to a point in the
matrix with an orientation specified by the spherical
angles /, a. Spatial interrelationships are best visual-
ized as stereographic projections of unit vectors. The
angles s, v, and / form a spherical triangle having
sides that are large circles on the surface of a sphere.
a is the angle between planes with sides s and /.

Equations 18a and b and 25a and b can be com-
bined to define the projected displacement from the
tetragonal point source

PRA(r, /, a; r
0
, h)"A

3
P
3
#A

5
P
5

(26)

where A
3
and A

5
are the radial and tangential compo-

nents of the field strengths and the notation PR desig-
nates the operation of projecting both the radial, P

3
,

and tangential, P
5
, components of A on to a column

[h k l]. In this case, the field obeys a simple inverse
square law, which allows Equation 15a to be used.

2M involves only the matrix with the precipitate
excluded. For these considerations, the radial dis-
tance, r

#
, locates the interface between the precipitate

and matrix. It is measured radially from the centre of
the precipitate. In treating a circular disc, it is conve-
nient to define an angle, /

0
, that locates the disc edge,

such that

r
#
"(h/2)/cos / for 0)/(/

0

and

r
#
"r

0
/sin / for /

0
)/)

p

2
(27)

The radial integration used to obtain Equation 15a

has introduced the term r

#
(/)2n~3 which tends to
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unity for strong fields, because nP3/2. It becomes
r
#
(/) for weak fields with nP2. The angular transi-

tion, /
0
, requires the following two integrals
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5
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2
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P
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/
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P

2p

0
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3
(s, /, a)A

3
(/)

#P
5
(s, /, a)A

5
(/) Dn sin/2n~2 da d/ (28)

Because n is not an integer over the range of interest,
all integrals must be evaluated numerically.

2.2. Finite disc
The field discussed in the previous section is useful
for large distances with r'10r

0
or for precipitates of

small radius. At the shorter distances with r(10r
0
,

corrections are required to a single asymptotic point
defect field. The finite disc size requires a summation
over a uniform distribution of asymptotic point defect
fields located in each disc. The summation is written in
integral form and represented by a sum of point sour-
ces when evaluated numerically. This method of
generating the field which describes core displace-
ments about a disc is reduced to a non-uniform and
weighted distribution of asymptotic point sources.
The details are described elsewhere [4]. The number
of sources is minimized according to a G¸Q scheme.
This field is designated by l

$
(r, /, h, r

0
). A distribution

of point sources introduces terms involving r that
depart from the simple inverse square law assumed in
deriving Equation 15a. Consequently, one must begin
with a more general equation for 2M, i.e. Equation 4b.
This is less convenient to deal with because of the
trigonometric form which requires additional numer-
ical calculations.

The contribution of the projected displacement
from each point source located at position ij is given
by the sum

PRl
$
(r, /, a, r

0
, h)"

phr2
0

4»
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X
#

nj
+
j/1
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+
i/1

(1#Z
+
)w

+
w

*

PRl
*+ Ar, /, a, 1

2
r
0
(1#Z

+
),

p
2

(1#Z
*
)B (29)

with the symbol PR indicating the projections of both
radial and tangential components as previously de-
scribed. Angular positions within the plane of the disc
are determined by Z

i
, and radial positions by Z

j
which

range from $1. Weights w
i
and roots z

i
can be found

in the literature on numerical methods, (e.g. [7]).
The number of points necessary in the Gauss—

Legendre quadrature (n
j
, n

i
) depends on the radial

distance from the disc [4]. For points very close to the
disc, larger numbers such as n

i
"30, n

j
"10, are ne-

cessary, whereas for larger distances, smaller numbers

(e.g. n

i
"8, n

j
"6) are sufficient. 2M can be written



as follows
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0

]G1!cos Ck0
(P

3
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3
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5
r2 DH r2 sin/ d/ da dr

(30)

Because the atom fraction, X
B
, of undersize or over-

size B atoms is fixed by the overall composition of the
alloy, the number of sites occupied by disc centres per
unit volume can be determined by
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where X
.B

is the fraction of B atoms remaining in
the matrix, which is given by the metastable diagram,
X

$
is the reaction of B atoms in the precipitate, and

»
1
"phr2

0
. h and r

0
are the height and radius of the

disc. If X
$

is known, »
1
, the average volume per disc

can be obtained from the data.
In order to compare with XRD data, five integra-

tions are required, two for the source [4], and triple
integration, over r, / and a for 2M. The computer
time is reduced in a numerical calculation by taking
a limited number of optimum locations and weighting
factors for point defect sources within each disc ac-
cording to Gauss—Legendre quadrature. This can be
directly used for the angular integration (over /, a).
Radial integration goes to infinity and can be solved
by a corresponding method [8]. However, the contri-
butions of large distances, r, are small and can be
neglected. Then it is possible to replace the upper limit
with a finite value and apply also the Gauss—Legendre
quadrature. Moreover, the integration space within
the matrix is reduced by symmetry to the upper hemi-
sphere of spherical angles. This can be further reduced
for a single disc. The resulting formula for 2M calcu-
lation is
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where the internal, radial, integration can be solved as
described above with about 10—15 points.

2.3. Stair-step pairs of discs
A two-step source is described by taking disc centres
that are spaced by a distance 2a at positions $a c

9
,

$a c
:
, $a c

;
with c

9
, c

:
, c

;
designating direction

cosines for the line connecting disc centres [4]. The
displacement field for a two-step pair of discs is for-
mulated in terms of radial distance, r, from the centre
of the line connecting disc centres. In general, rota-
tional symmetry for unprojected displacements about

the z-axis, is lost in the two-step source.
The projected displacements for the two-step pair is
given by
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with the locations of discs 1 and 2 given in terms of
a common origin. Equation 33 represents the sum of
displacements from all point sources located within
both discs. For a [1 0 1] stair-step, c

x
"c

z
"1/21@2,

with c
y
"0. Other orientations of the type S1 1 0T are

possible and likely. In 2M calculations, the integral
must be carried out numerically according to the
procedure described by Equation 32 but by using
projected displacements for the pair. The volume term
»
1

now refers to the volume of both discs. Both dis-
placement terms in the argument blow up at each of
the source centres and must be avoided. Strictly, the
volume occupied by the two discs should also be
excluded from the integration. For r*20r

0
, the inte-

gral can be carried out as if there is only one source
of double strength located halfway between the pair of
discs. Also, the quantity X

#
represents the fraction of

lattice sites coinciding with a two-step origin. This
may be calculated from the atomic fraction of beryl-
lium, X

$
"1

2
, the dimensions of the disc and the den-

sity of two-step precipitation. The density and mean
distance between centres can be calculated by placing
centres on an average cubic lattice.

In order to compare with XRD data, an additional
triple integration is required for 2M factors over r, /,
and a. Again, the computer time for 2M calculations is
reduced in a numerical calculation by taking a limited
number of optimum locations and weighting factors
for point defect sources within each disc. The integra-
tion space within the matrix needed to carry out
Equation 32 is reduced by symmetry to the upper
hemisphere of spherical angles. Calculation time is
further reduced by interpolation from carefully se-
lected initial points.

3. Experimental procedure
A polycrystalline commercial Brush 25 alloy with
Cu—11.50 at% Be—0.23 at% Co was used throughout
this study. An initial solution treatment of 3/32 in
(&2.38 mm) thick discs was carried out in an argon
atmosphere at 780 °C for 15 min. Quenching was into
a brine solution, and surfaces were subsequently acid
cleaned and electropolished. Between ageing treat-
ments, samples were stored at !4 °C.

Two sets of XRD data were collected. For the first,
the MoKa doublet was used to give the higher order
(4 2 2) and (3 3 3, 5 1 1) peaks in addition to the (1 1 1).
(2 0 0), (2 2 0), (3 1 1), (2 2 2) and (4 0 0). This gives some-
what larger k

0
values for the measurement of weaker

displacement fields that are expected for the shorter
ageing times, i.e. the period from 16—256 min at
200 °C. Fig. 6 shows a hardness increase extending to
one-third of the maximum value after 256 min. Fig. 7
illustrates two pairs of first- and second-order peaks

from (1 1 1) and (2 0 0) planes. In each case, the broad
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Figure 6 Micro-hardness of Cu—Be alloy aged at 200 and 350 °C for
different times.

low-angle portion of the intensity distribution is
largely due to quasiline. Going from first- to second-
order doubles the value of k

0
. The effect of an increase

in this parameter is readily seen in the (2 0 0) and (4 0 0)
data. An examination of the data after a 256 min ageing
treatment, illustrates the discontinuous nature of the
quasiline intensity. The (1 1 1), (2 2 2) pair show much
smaller quasiline intensity than the (2 0 0), (4 0 0) pair.
This choice of crystal directions represents an extreme
for demonstrating this effect in the present alloy. An
isotropic displacement field would give a quasiline that
increases smoothly with k

0
(or 2h) irregardless of (hk l).

This is seen from Equation 16a which depends upon k
0

but not the crystal direction. An explanation of this
behaviour seems to require a displacement field that is
anisotropic, and as will be seen later, preferred orienta-
tions of the precipitate with respect to the free surface
play an equally important role.

A second and more accurate set of data was ob-
a1
at 200 °C.

tained using monochromatic CuK radiation. This
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was used for 16 and 64 h at 200 °C. The matrix scatter-
ing effects are large enough so that the highest orders
obtained with MoKa are not needed. A position-sensi-
tive detector, fine-focus copper X-ray tube, and an
incident Ka1

monochromator, gave a high density of
data points with high statistical accuracy. These data
points are shown in Fig. 8a and b for (1 1 1), (2 0 0),
(2 2 0), (3 1 1), (2 2 2), and (4 0 0) peaks. If this is related
to hardness, an ageing time of 64 h at 200 °C, resulted
in an increase which is halfway to its maximum value.
An examination of the (4 0 0) peak, in Fig. 8b shows
that it has become largely quasiline.

Table I gives a listing of 2M values obtained from
Pearson VII non-linear fitting [9] of the intensity
distributions shown in Fig. 8a and b. Equations 1—3
were used to partition integrated intensities for the
Bragg peak, static diffuse, and quasiline peaks. Theory
also predicts that the widths of these distributions
increases in the order given. If more than one fit is
obtained with a similar misfit, or R factor, the width
criterion typically limits the fit to one 2M value.
A modified non-linear Levenberg—Marquardt method
was used to search for a best fit. When the conver-
gence was very slow, an interactive routine with
graphics was more efficient in terms of computer time.
Individual curves are shown for the three components
in Fig. 8a and b. The fitted curves using three symmet-
rical functions are generally good, although small os-
cillations are apparent between the best fit using three
symmetrical functions and the data. Some additional
error is also expected in all determinations due to the
use of symmetrical functions for fitting scattering with
a degree of asymmetry. Despite these concerns, the
results lead to consistent findings when fitted to one of
the models already discussed.

4. Fitting of data models
In order to arrive at models that relate to our data, the
anisotropic behaviour of 2M and quasiline shifts were

examined. These findings are listed in Tables II and
Figure 7 MoK diffraction peaks for (1 1 1), (2 0 0), (2 2 2), and (4 0 0) from a Cu—11.50 at% Be—0.23 at% Co alloy aged for designated times

a1



Figure 8 Monochromatic CuKa1
diffraction peaks with position sensitive detector: (a) aged 16 h at 200 °C, (b) aged 64 h at 200 °C.
TABLE I Experimental 2M values from Pearson VII fits of 16
and 64 h data at 200 °C with R values. Fitting was constrained to
satisfy Equations 1—3, with quasiline, static diffuse, and Bragg
decreasing in width

(h k l ) 2M
16

2M
64

R
16

(%) R
64

(%)

(1 1 1) 0.14 0.12 5.9 5.3
(2 0 0) 0.30 0.27 3.8 3.7
(2 2 0) 0.28 0.35 5.3 3.5
(3 1 1) 0.42 0.63 2.8 4.9
(2 2 2) 0.27 0.35 3.6 3.0
(4 0 0) 1.00 1.00 3.7 4.1

Scale 3.79 4.77

III for disc diameters of 50—90 nm. Because of the high
density of precipitates found in the present alloy, disc
separations were taken to be small and range roughly

from one to one-half of the disc diameter. Parameters
common to all calculations include an atomic fraction
of X

B
"0.113 for beryllium in the alloy and a precipi-

tate composition of X
$
"0.5 [10]. At 200 °C, the

metastable diagram extrapolates to X
."

"0.06 [10]
and transformation strains of e

11
"e

22
"0.114,

e
33
"!0.338 were used for the 16 h treatment while

e
11
"e

22
"0.125, e

33
"!0.360 have been reported

after 64 h [2]. Both combinations established the tet-
ragonality parameter, C

4$
, by Equation 23b.

The 2M factor is most sensitive to the disc dimen-
sions as seen in the scale factors listed in Table II.
With large displacements and the altered changes in
disc shapes associated with changes in thickness and
radius, linear relationships cannot be expected from
Equation 32. Scale factors show a less than linear
increase with disc volume. In order to assess relative
changes as they relate to anisotropy, all entries are
normalized relative to the largest values which occur
at the (4 0 0). Although small systematic differences in

the normalized entries are found between the various
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TABLE II 2M trends calculated with various dimensions for a single disc and different separation distances for [1 1 0] pairs. Scale factors
and normalization for the (4 0 0) at 0° are listed.

hk l S0
j

2M for 2r
0

(nm), h (nm), 2a (nm)

6.0, 0.29, — 9.0, 0.29 6.0, 0.29, 3.0 6.0, 0.29, 7.0 6.0, 0.58 6.0, 0.58, 3.0

1 1 1 54.7 0.078 0.076 0.089 0.083 0.095 0.109
54.7 — — 0.078 0.070 — 0.096

20 0 0 0.266 0.266 0.282 0.272 0.308 0.324
90 0.020 0.023 0.022 0.020 0.025 0.029
90 — — 0.023 0.019 — 0.029

22 0 45 0.285 0.282 0.320 0.307 0.333 0.368
45 — — 0.278 0.260 — 0.332
45 — — 0.288 0.275 — 0.331
45 — — 0.288 0.275 — 0.331
90 0.043 0.043 0.046 0.042 0.053 0.058
90 — — 0.043 0.038 — 0.058

31 1 25.2 0.590 0.586 0.620 0.613 0.643 0.663
25.2 — — 0.582 0.559 — 0.638
72.4 0.121 0.119 0.133 0.121 0.145 0.167
72.4 — — 0.119 0.105 — 0.150
72.4 — — 0.128 0.099 — 0.138
72.4 — — 0.130 0.126 — 0.139

22 2 54.7 0.309 0.315 0.340 0.332 0.358 0.395
54.7 — — 0.295 0.282 — 0.357

40 0 0 1.000 1.000 1.000 1.000 1.000 1.000
90 0.086 0.086 0.086 0.080 0.103 0.114
90 — — 0.086 0.083 — 0.107
Scale factors 5.12 7.88 6.94 6.26 8.00 10.32
TABLE III Calculated 2M values for four models to be com-
pared with data from samples aged for 16 and 64 hrs at 200 °C

2M for 2r
0

(nm), h (nm), 2a (nm)

(h k l ) S0
j

16 h 64 h

5.0, 0.29, — 3.6, 0.29, 2.0 6.4, 0.29, — 4.8, 0.29, 3.0

1 1 1 54.7 0.079 0.083 0.081 0.087
54.7 — 0.077 — 0.076

20 0 0 0.269 0.262 0.270 0.274
90 0.022 0.020 0.025 0.024
90 — 0.021 — 0.024

22 0 45 0.290 0.320 0.294 0.318
45 — 0.283 — 0.297
45 — 0.277 — 0.275
45 — 0.277 — 0.275
90 0.042 0.042 0.046 0.032
90 — 0.069 — 0.047

31 1 25.2 0.593 0.589 0.592 0.618
25.2 — 0.588 — 0.589
72.4 0.119 0.124 0.125 0.133
72.4 — 0.118 — 0.121
72.4 — 0.133 — 0.101
72.4 — 0.110 — 0.110

22 2 54.7 0.308 0.320 0.316 0.341
54.7 — 0.294 — 0.299

40 0 0 1.000 1.000 1.000 1.000
90 0.082 0.084 0.092 0.093
90 — 0.082 — 0.095

Scale

factors 4.28 4.08 6.08 5.92
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models, in most cases these would not be experi-
mentally observable. The most obvious anisotropy is
seen to be given by 2M

90
(2 0 0)(2M (1 1 1)(2M

0
(2 0 0), with a similar relation for the (4 0 0), (2 2 2)
combination. One finds a factor of 10 in 2M between
the extreme orientations of M2 0 0N and M4 0 0N combi-
nations, i.e. with /"0, and 90°. This is due to the
large anisotropy associated with the tetragonal trans-
formation strain and the elastic anisotropy of the
copper-rich matrix.

Results similar to Table II cannot be fitted to ex-
perimental values if all M1 0 0N orientations of M1 0 0N
disc planes relative to the free surface are equiprob-
able. The data strongly suggest that (0 0 1) disc planes
in surface grains prefer to be parallel to the free sur-
face. The following normalized weighting factor was
used for disc planes [11].

u
j
"p

j
exp(!C

2
sin2 S

j
)N

m
+
j

p
j
exp (!C

2
sin2 S

j
)

(34)

with p
i

designating the number of equivalent disc
planes at an angle S

j
with respect to the diffracting

planes (h k l) which are parallel to the free surface, and
C

2
determines the degree of preferred orientation.

That is, C
2
"0 corresponds to the random or equi-

probable case. With C
2
'0 a degree of preferred ori-

entation is introduced. It should be noted that data
were collected using symmetrical Bragg—Bretano dif-

fraction optics and grains having (1 1 1), (2 0 0), (2 2 0),



TABLE IV Normalized, orientation corrected 2M values for four models showing agreement with data from 16 and 64 h samples aged at
200 °C. Data from Table III are used

hk l 2M for 2r
0

(nm), h (nm), 2a (nm)

Exp., 16 h 5.0, 0.29, — 3.6, 0.29, 2.0 Exp., 64 h 6.4, 0.29 4.8, 0.29, 3.0

1 1 1 0.14 0.093 0.095 0.12 0.098 0.098
20 0 0.30 0.269 0.275 0.27 0.270 0.273
22 0 0.28 0.300 0.304 0.35 0.311 0.303
31 1 0.42 0.549 0.557 0.63 0.549 0.558
22 2 0.27 0.360 0.365 0.33 0.380 0.381
40 0 1.00 1.000 1.000 1.00 1.000 1.000

Scale factor 3.79 3.61 3.59 4.77 4.92 4.91
C
1
, C

2
1.02, 2.39 0.98, 2.40 1.00, 2.15 1.01, 2.23
and (3 1 1) planes parallel to the surface were examined
at each of the Bragg—like reflections. The angles S

j
in

Tables II, III and V (see later) are located in Fig. 4a in
terms of the precipitate planes [h@ k@ l@] ("S1 0 0T)
and the previously mentioned diffraction planes.

It is convenient to introduce a second parameter,
C

1
, into the orientation fitting procedure which pro-

vides a test of scaling for the various models. Both C
1

and C
2

are fitted using data given in Table III for
single and paired discs as indicated by the following
relation

C
1
(2M)"

m
+
j

x
j
(2M

j
) (35)

where 2M is relatable to the experimentally deter-
mined 2M of Table I, and 2M

j
are the corresponding

theoretical predictions from one of the models of
a fixed orientation.

Results from the 2M fitting procedure are given in
Table IV for samples aged at 200 °C for 16 and 64 h.
Both C

1
and C

2
determinations are remarkably con-

sistent at (1.02, 2.4) and (1.00, 2.15). With C
1
very close

to unity, the 2M scaling from all models is very good.
C

2
is of considerable interest for several reasons. Di-

rect precipitate intensity data from the (0 0 1), (1 0 0)
demonstrates that the (0 0 1) habit planes prefer to be
parallel to the surface [2]. The probability for this
orientation, obtained from relative integrated inten-
sites, is found to be 2.25 relative to the random case
with all three orientations having a 1/3 probability.
Calculations using experimental C

2
values, give ratios

of 2.54 and 2.44, for samples aged 16 and 64 h, respec-
tively. Although the present values correspond to
a 200 °C ageing treatment and data obtained from
direct scattering correspond to a sample aged at
315 °C, the small differences are likely to be experi-
mental error. These values of C

2
are used later for

determining quasiline shifts.
Differences found in 2M (Table IV) for single discs

and pairs of discs cannot be distinguished experi-
mentally. However, one finds that disc diameters are
localized to the range from 3.6—5.0 nm after ageing for
16 h and 4.8—5.4 nm after 64 h. In each case, a height
of 0.29 nm is taken and the temperature is 200 °C. The

displacement fields for each of these models are shown
Figure 9 Displacement magnitude contours in As about a
Cu—50 at% Be disc with a 0.29 nm thickness and a radius of (a)
5.0 nm, (b) 6.4 nm.

in Figs 9—11. Experimental and calculated values of
2M are plotted in Fig. 12.

To distinguish further between the various models,
particularly between single discs and pairs, quasiline
shifts were examined. This presents added difficulties

in that a volume of severe deformation must be
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Figure 10 Displacement magnitude contours in As about a stair-step pair of discs at 45° (16 h model). (a) 2r "3.6 nm, 2a"2.0 nm, and

0

0.29 nm thick. Side and front views with selected displacement directions shown by arrows. (b) Same as (a) but the centre zone expanded.
defined as limiting contours in Figs 9—11. An exam-
ination of the schematic representation of Fourier
coefficients shown schematically in Fig. 3b defines n

Q
as the maximum number of cells along columns (h k l)
that correspond to a severely distorted zone about
a precipitate. For the lowest order matrix peak, this is
roughly equal to the diameter of a disc for pairs and
the radius for single discs both measured from the
centre. An examination of Figs 9—11 indicates that
a displacement magnitude of 0.15 in As would repres-
ent a reasonable first estimate for the bounding dis-
placement surface of the severely distorted zone. It
represents a displacement about twice the mean ther-
mal displacement in copper at room temperature. The
size of the zone is related to the scaling of diffraction
phenomena. It is not constant but increases as the
square root of distance to the (h k l) point in reciprocal
space (see Equations 8c and 17). At the larger distan-
ces in crystal space, the inverse square displacement
law may be used to estimate changes in the bounding
surface which defines the highly distorted zone asso-
ciated with each quasiline. This results in surfaces of
reduced displacements or larger volumes in crystal
space for the highly distorted zones as one goes to
(h k l) points at larger distances in reciprocal space.

The following relation was used to locate the displace-
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ment surfaces

l
4
(h k l)"0.15

k
0
(1 1 1)

k
0
(h k l )

(36)

Increasing the volume for averaging relative column
displacements results in smaller changes in the inter-
planar spacing at the higher orders of like planes.
Table III shows this decrease at the (4 0 0) with (2 0 0)
giving maximum values. Here normalization is at the
(2 0 0). Equation 24 in King [4] is used for calculating
the primary quasiline shifts.

Table V contains primary spacing changes from
four models which could not be distinguished from an
analysis of 2M. The larger differences between single
discs and stair-step pairs is encouraging. Before relat-
ing Table V to experimental shifts through weighting
factors, the experimental conditions are re-examined
as they are related to the weighting factors. To un-
scramble the three types of scattering, Pearson VII
functions were fitted to profile data with a single
Pearson VII used to describe the integrated intensity
and peak position for a quasiline at each (h k l) loca-
tion. This is justified by the dominance of the largest
2M in locating the observed intensity distribution.

That is, columns H

hkl
making the smallest angle, S,



Figure 11 Displacement magnitude contours in As about a stair-step pair of discs at 45° (64 h model). (a) 2r "4.8 nm, 2a"3.0 nm, and

0

0.29 nm thick. Side and front views with selected displacement directions shown by arrows. (b) Same as (a) but the centre zone expanded.
with the disc normal, [0 0 1] are the dominant con-
tributors to quasilines due to their large values of 2M
and their strong orientation preference for disc align-
ment with the surface. The experimental shifts are
compared with a first moment analysis using the re-
sults from each model. This requires relative quasiline
intensity weighting as well as orientation factors. The
procedure and findings are described in detail in the
next section. Two of the four models become preferred
after examining the weighted quasiline shifts.

5. Discussion
Precipitation in a commercial polycrystalline Cu—
11.55 at% Be—0.23 at% Co alloy was examined after
ageing at 200 °C for 16 and 64 h using relative integ-
rated intensities and peak shifts. This ageing treatment
was found to give about one-half the maximum hard-
ness increase. Data were analysed by using simplified
models to describe the atomic displacement field
around disc-shaped precipitates in an elastically
anisotropic medium. Bragg-like XRD profiles were
partitioned into three components, i.e. Bragg, static
diffuse, and quasiline for each (h k l) distribution. The
fitting procedure made use of symmetrical Pearson

VII functions which were constrained by theoretical
considerations involving the relative integrated inten-
sities and widths of the three components.

With the present polycrystalline samples and
CuKa1

X-radiation, the depth of penetration is limited
to the average grain size which permits only grains at
the surface to be examined. This presents a modified
environment relative to interior grains that are com-
pletely surrounded by solid material. The possibility
of surface relaxation in a system such as CuBe exhibi-
ting zones of severe deformation must be considered
in explaining the large anisotropies in the quasiline
intensity and peak shift data. Displacement aniso-
tropy as seen in 2M and related changes in the average
lattice parameter become enhanced because disc-
shaped precipitates tend to align parallel to the free
surface. If one considers diffraction from (0 0 2)
oriented grains, the corresponding (0 0 1) habit planes
of disc-shaped precipitates tend to align preferentially
parallel to the free surface. This is preferred by a factor
of &2.5 relative to a completely random arrangement
of (1 0 0) orientations. Likewise, for grains having
(1 1 3) matrix planes parallel to the surface, the nearest
(0 0 1) precipitate planes are inclined by 25.2° which
are preferred over those at 72.4°. These preferences, as
described by the orientation function, Equation 34,

located the major Bain strain in precipitates and
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Figure 12 (d) Experimental and (s, ]) calculated values of 2M for
samples aged for (a) 16 and (b) 64 h at 200 °C. The h, k, l indices of
the six measured peaks are indicated. The theoretical values were
calculated by using the disc-pair model (Table IV) and assuming
both the random distribution of precipitates (]), with all M1 0 0N
orientations of M1 00N disc planes equiprobable relative to the free
surface, and (s) the preferred orientation of the defects parallel to
the free surface.

related matrix displacements so that the largest pro-
jections are along columns perpendicular to the free
surface. The ability to attain this condition is limited
by crystallographic relations between the matrix
grains and the (0 0 1) habit plane of the precipitates.

A similar argument holds for changes in the average
lattice parameters within the severely distorted zone
as determined from the experimental positions of the
quasiline peaks. The tendency for the largest changes
in lattice parameter to be perpendicular to the surface
can be tested without an elastic displacement model.
Tetragonal elastic Bain-like strains appear in the
matrix in response to thin coherent disc-shaped pre-
cipitates having been subjected to large tetragonal
Bain strains. The various spacing changes are inter-
related through an average cell which is obtained by
deforming the cubic cell of the matrix. For small
changes in the cubic cell, the spacing changes become

*d
5
"[(h2#k2)*a#l2*c]/(h2#k2#l2)3@2 (37)

The change, *a, is along the cubic axes [1 0 0] and
[0 1 0] parallel to the disc, while *c is perpendicular
along [0 0 1] columns. These are representative of
the average tetragonal cell within the highly distorted

zone and introduce phase shifts which provide an
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TABLE V Estimates of primary quasiline shifts, *d
1+

, for two
discs and [1 1 0] pairs used for comparing with samples aged for 16
and 64 h at 200 °C. Volumes based upon a 0.015 nm displacement
surface were averaged. Scale factors in 0.0001 nm and normalization
for (2 0 0) at 0° are listed

hk l S0
j

*d
1+

for 2r
0

(nm), h (nm) 2a (nm)

5.0, 0.29, — 3.6, 0.29, 2.0 6.4, 0.29, — 4.8, 0.29, 3.0

1 1 1 54.7 0.426 0.360 0.653 0.376
54.7 — 0.258 — 0.35

2 0 0 1.000 1.00 1.000 1.000
90 !0.022 !0.12 0.018 0.006
90 — !0.14 — !0.014

22 0 45 0.294 0.358 0.298 0.359
45 — 0.277 — 0.268
45 — 0.220 — 0.227
45 — 0.220 — 0.227
90 !0.205 !0.104 !0.123 !0.136
90 — !0.073 — 0.098

31 1 25.2 0.576 0.486 0.611 0.606
25.2 — 0.353 — 0.240
72.4 !0.118 0.023 !0.141 0.055
72.4 — 0.040 — 0.060
72.4 !0.054 — !0.086
72.4 — !0.014 — 0.024

22 2 54.7 0.221 0.119 0.260 0.171
54.7 — 0.071 — 0.091

40 0 0 0.72 0.471 0.55 0.359
90 !0.148 !0.090 !0.180 !0.094
90 — 0.008 — 0.035

Scale
factor 7.79 16.1 7.38 11.7

estimate of the various quasiline peak positions. The
measured spacing changes from quasilines are deter-
mined by averaging over crystallographically inter-re-
lated orientations and a quasiline weighting factor, q

j
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j

x
j
q
j
*d

j
(38a)

with

q
j
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Q(M
j
)

+
j
Q(M

j
)
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x
j

has already been defined by Equation 34, with
C

1
"1 and C

2
determined by 2M calculations, Q (M

j
)

is defined by Equation 3, and *d
j

by Equation 37.
Intensity weighting of *d

j
is carried out using the 2M

values listed in Table III in the exponential form of
Equation 3. Individual peaks normally treated equally
in the multiplicity of cubic reflections become unequal
in intensity and are shifted. These weighted compo-
nents play a key role in the first moment intensity
analysis of the data. However, the overall trends are
still maintained if a linear weighting scheme is used
instead of the exponential relation given by Equa-
tion 3. A weighted least squares analysis yields *c"
0.0040 nm, *a"0.0005 nm for 16 h and 0.0042 nm,
0.0008 nm for 64 h.

The previous calculation demonstrates that an

average tetragonal cell with the major change, *c,



TABLE VI Normalized orientation and intensity weighted estimates of quasiline shifts (in 0.0001 nm) for a tetragonal cell: two single discs
and [1 1 0] pairs are compared with data from 16 and 64 h samples aged at 200 °C. Data from Table V are used

2r
0

h 2a Quasiline shifts
(nm) (nm) (nm)

hk l

11 1 20 0 22 0 31 1 22 2 40 0 Scale Tetr. *c,*a
factor %

— 16 h exp 0.39 1.00 (0.54) 0.37 0.17 0.36 23 — —
— — Tetr 0.48 1.00 0.40 0.48 0.24 0.49 19.9 100 40.0, 5.0
5.0 0.29 — 0.50 1.00 0.38 0.50 0.25 0.56 22.2 65 29, 6
3.6 0.29 20 0.44 1.00 0.34 0.420 0.17 0.47 24.1 33 16, 6
— 64 h exp 0.54 1.00 0.31 0.31 0.17 0.41 22 — —
— — Tetr 0.56 1.00 0.44 0.49 0.28 0.50 20.8 100 42, 8
6.4 0.29 — 0.67 1.00 0.42 0.49 0.31 0.43 20.7 65 27, 10

4.8 0.29 3.0 0.50 1.00 0.38 0.37 0.23 0.41 22.5 48 22, 8
perferentially directed towards the free surface, pro-
vides a good quantitative estimate of the observed
quasiline peak positions (see Table VI) when appro-
priate weighting factors are introduced. The fractional
changes of the cubic cell are all positive with the sum
giving a small positive increase in the cell volume
relative to the cubic cell of the as-quenched alloy. This
can be related to composition shifts of !5.2% and
!6.1% Be for 16 and 64 h using Vegards Law, i.e. by
dividing the fractional volume change by the volume
size factor ("!0.2645). This gives very good agree-
ment with a low-temperature extrapolation of the
previously published metastable diagram [10].

Thus far, the 2M analysis has not been able to
determine whether single discs or stair-step pairs of
discs best fit our data. Lattice parameter changes have
been calculated from each of these models; however,
neither model includes the effect of discs that surround
the primary model. Secondary discs are arranged in
unknown arrangements and must be included with the
primary models to describe the full deformation in the
severely deformed zone. The fractional volume change
resulting from discs subjected to a Bain distortion is
negative, which introduces a positive volume change
in the highly distorted zone. In view of the preceding
calculation, it will be assumed that this expanded zone
averages to a tetragonal cell. Primary cells are always
in close proximity to a highly deformed zone, whereas
the secondary field is produced by discs acting over
a range of distances and locations making it more
uniform. The new lattice of the highly distorted zone
includes a sum of both contributions, i.e.

*d
j
"*d

pj
#*d

sj
(39)

where *d
pj

is obtained from the primary model and
*d

sj
remains as an unknown d-spacing change from

secondary discs, as given by Equation 39. Primary
spacing changes for single discs are based upon tetra-
gonal symmetry. Although pairs appear to give
orthorhombic displacements, the departure from tet-
ragonal symmetry is small and neglected.

The optimum secondary parameters, *c
4
and *a

4
,

are obtained by varying *d
4j

in a weighted least
squares fit of the data using equations 38a, b and 39.

Table VI shows the resulting fit from this procedure.
Stair-step pairs best fit the normalized pattern of ex-
perimental shifts for both ageing times. Normalized
values are typically within 25%, which represents an
expected overall error in our procedure. However, the
experimental departure for the (2 2 0) in the 16 h data
set appears to be anomalous with respect to all other
points. The preceding exploratory calculation based
upon a tetragonal unit cell and single primary disc
calculations give similar results with normalized sets
showing greater departures from the experimental
data than the pair models. For the 16 h sample and
a pair model, the secondary contribution is 33% while
for 64 h it is 48%. Both are determined from relative
scale factors. With disc calculations, the secondary
contribution to the spacing change becomes dominant
at 65%. When all of the spacing data are examined
collectively, the stair-step pair with a secondary field
becomes the preferred model for making quantitative
estimates.

Spacing changes from (2 0 0) calculations in
Table VI combined with secondary spacing changes
give an average cell expansion along the c-axis of
#1.3% within the highly distorted zone, while along
the perpendicular directions it is only about #1/9 of
this value. Our best Vegards Law estimate for the
composition shifts, obtained from the pair model and
the tetragonal cell, are 5.3 and 6.3 at% Be. This
locates the metastable boundary at 6.0 (16 h) and
5.0 at% Be (64 h) for GP zones in a Cu—11.3 at % Be
binary alloy. 0.2 at% Be was subtracted from the
original 11.5 at% Be ternary alloy for beryllide forma-
tion making it comparable to the binary with 11 at%
Be. Although a downward shift in this boundary is
expected as the transformation progresses, a 1% shift
in boundary composition cannot be stated with cer-
tainty because of possible errors in the data and the
method of peak separation.

It is instructive to compare previous results ob-
tained from a sample aged at 315 °C for 15 and 30 min
with the present results for a sample aged at 200 °C for
16 and 64 h. Both samples were cut from the same
alloy, had the same prior solution treatments, and
both ageing treatments were close to the half max-
imum hardness. At the higher temperature, single

flattened ellipsoids of revolution gave diameters
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estimated at 9 and 20 nm and average thicknesses of
one and two unit cells, respectively. At 200 °C, quantit-
ative estimates of the diameters for stair-step pairs give
3.6 and 4.8 nm, a height of one unit cell (0.29 nm), and
a pair spacing which appears to increase with time.

At this point, it is interesting to note several points
of agreement with results obtained from diffuse X-ray
scattering [12] which was carried out with a binary
Cu—10.9 at% Be alloy at 265 °C for 100 and 200 min.
It was reported that single and multilayered M1 0 0N
Be-rich planes in a stair-step configuration are in
agreement with the scattering data. Multi-layered
stair-steps become preferred with increasing ageing
time. Also, displacements go to zero after 5—7 layers or
0.9—1.3 nm which is in very good agreement with our
results from a ternary alloy of similar Cu—Be composi-
tion but a somewhat lower annealing temperature.
This, of course, represents half the spacing of the
stair-step pairs obtained independently from a com-
pletely different method. Arrays having a large num-
ber of well-spaced parallel discs are not likely because
of the absence of low-angle scattering peaks in the
present samples [2].

Quasilines became dominant after ageing at 315
and 200 °C. At the higher temperature, quasiline shifts
were much smaller and could be predicted from a sys-
tem of randomly located single discs, within experi-
mental error. A small quasiline shift is expected at
315 °C and is accounted for in the theory. Quasiline
shifts are more obvious at 200 °C and are likely to
result from both severe displacement fields from discs
and a reduction of the berylluim content in the matrix.
Both effects combine and cannot be reliably separated
within the secondary parameters of the 200 °C data.

When (h 0 0) quasiline widths are intercompared
at 200 °C versus 315 °C, the quasilines sharpen with
increasing disc size. The disc size at the higher temper-
ature is about 2—3 times larger and quasiline sharp-
ness is scaled accordingly. Ageing at 200 °C gave
quasilines that are obviously broader when compared
at the half maximum hardness level.

Estimates of the relative densities of disc centres
from Equation 31, using disc radii and the metastable
boundary, give an order of magnitude higher density
at 200 °C as compared with 315 °C. This high density
of discs at the lower temperature would be supportive
of a degree of local order about arrays of primary
discs. The orientation data for discs and the secondary
fields would be consistent with a mix of discs oriented
mainly parallel to the primary array and to a lesser
extent some local discs are likely to be perpendicular
[13]. The field from secondary discs maintains a tet-
ragonal deformation which is also found from primary
pairs. Cubic symmetry would require equiprobable
disc orientations along all three cubic axes. However,
the best fitted values of *c/*a tend to be &2.7 which
comes close to the orientation preference for discs
parallel to the free surface.

6. Conclusion
To conclude, we re-examine some general trends in

the diffraction profiles of Figs 7, 8a and b. These may
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TABLE VII Diameter estimates for single, 2r
4
, and paired discs,

2r
1
, [15] for short times at 200 °C

2r
4
(nm) 3.0 3.2 3.6 3.9 4.2

2r
1

(nm) 2.1 2.3 2.6 2.8 3.0
t (min) 16 32 64 128 256

be inter-related with 2M in Table I. Fig. 2 illustrates
relative partitioning into the three components. The
most obvious change in profile results from the dis-
placement and integrated intensity of the quasiline
relative to the sharper Bragg peak and static diffuse
peaks. Extreme profile changes are seen by comparing
(h 0 0) with (h h h). This is especially true for the (4 0 0)
and (2 2 2) with 2M"3.79 and 1.02 after 16 h ageing
at 200 °C. For 64 h the (4 0 0), (2 2 2) values increase to
2M"4.77 and 1.67. At each of these times, the quasi-
line dominates the (4 0 0) while for the (2 2 2) the inten-
sity partitioning into three components is more
equally distributed. The (4 0 0) and (2 2 2) have the
highest (sin h/k)n weight factors in 2M which favour
quasiline partitioning in the higher order peaks. For
the shorter times (Fig. 7), some quasiline is observed in
the (4 0 0) after only 16 min at 200 °C, and reshaping
occurs continuously from 16 min to the longest ageing
time of 64 h. Quantitatively estimated pair diameters
for the shorter times are given in Table VII and range
from 2.1—3.0 nm for 16—128 min. Single disc models
range from 3.0—4.2 nm leading to about one-third the
maximum hardness [15]. Longer ageing times up to
64 h give a pair diameter of 4.8 nm at about one-half
the maximum hardness.

A re-examination of the displacement models of
Figs 9—11 illustrates that the major displacements are
located within the disc radius for single discs and
a disc diameter for pairs. These are oriented perpen-
dicular to the discs giving the maximum column pro-
jections along the [0 0 1] direction. At large distances,
displacements become radial and small. A system of
[0 0 1] columns oriented perpendicular to the discs are
able to accumulate the largest displacements over the
integration for 2M. Columns of the type [0 0 4] are
most favourable in every respect and tend to partition
into quasilines for both single disc and pair models,
whereas columns of the type [4 0 0] and [0 4 0] repres-
ent the opposite extreme for accumulated projected
displacements and would tend to favour Bragg and
SDS partitioning. Columns of the (2 2 2) type tend to
have an intermediate to low accumulation of projec-
ted displacements because of its 54.7° inclination with
the major displacement and disc cross-section. The
symmetry change resulting from [1 0 1] pairs gives
two values for 2M; however, this is not large enough
to be observable. The fortuitous combination of the
largest accumulation of displacements and an orienta-
tion preference for [0 0 1] columns satisfies one condi-
tion for making age-hardenable Cu—Be alloys unique
in demonstrating quasiline partitioning. This is con-
trasted with (h h h) reflections where such preferences
do not exist.

Quasiline enhancements occur for the (1 1 3) com-

ponent within the overall multiplicity. Large accumu-



lations of projected displacements are found along
columns making a 25.2° angle with the disc normal.
Columns oriented at 72.4° become influenced by
reduced projections from large projection angles,
a displacement limiting cusp, and a small disc cross-
section. With an orientation enhancement for [1 1 3]
columns, this becomes competitive with [0 0 l ] type
columns for a large 2M and quasiline formation.

Tetragonal quasiline shifts are determined by
changes in d-spacings averaged over highly distorted
zones. These local spacing changes are best related to
the difference in projected displacements as one steps
from cell to cell along oriented columns. One can
express the local spacing change in terms of the projec-
ted displacement gradient times the height of the cells.
Averaging over all columns gives an average gradient
for oriented columns in the highly distorted zone.
A comparative re-examination of the (2 0 0) or (4 0 0)
quasiline shift data relative to the nearby (1 1 1) or
(2 2 2) show large differences. The former give large
shifts and the latter are much smaller. If one were to
define the limiting surface at &0.015 nm for the se-
verely deformed zone, [0 0 l] columns of cells contains
the highest average projected displacement gradient,
whereas [h 0 0] type columns average to the smallest.
This is true for both discs and pairs. If one examines
[h h h] column projections, the average gradient is
intermediate. They become smaller for [h h h] columns
intersecting the highly disturbed zones of [1 0 1] stair
step pairs. Table V illustrates these differences in aver-
age gradient for each direction. This reduction in
quasiline shift, along with the reduced shift for the
(1 1 3), become determining factors when deciding
upon a single disc model or the preferred stair-step
model which better approximates the displacement

gradients.
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